01. nossos produtos

Produtos quentes

shenzhen jietong technology co., ltd. é uma empresa de alta tecnologia com foco no desenvolvimento, produção e vendas de identificação por radiofrequência (RFID).

4-port UHF RFID fixed channel reader
Leitor fixo RFID UHF JT-928 de 2/4 portas Leitor fixo RFID UHF JT-928 de 2/4 portas

Antena de 4 portas, interface fêmea TNC, chip serial TM, leitura de grupo

UHF Desktop RFID Reader
JT-6210 Leitor e gravador USB de mesa UHF RFID 0-1m ISO18000-6C JT-6210 Leitor e gravador USB de mesa UHF RFID 0-1m ISO18000-6C

O leitor e gravador USB de mesa UHF RFID JT-6210 possui dupla interface de comunicação USB, com entrada da porta serial à esquerda e saída do teclado à direita.

 Industrial Grade UHF RFID Reader
Leitor RFID UHF de nível industrial JT-7100 0-3m 860-960MHz Leitor RFID UHF de nível industrial JT-7100 0-3m 860-960MHz

Design de nível industrial IP65/IP67, Distância de leitura de 0 a 3 m, leitura de grupo de 0 a 20 tags, suporte ao protocolo Modbus/Profinet.

UHF RFID Gate Reader with Andorid Screen
Leitor de portão RFID UHF JT-923 ISO 18000-6C com tela Android para gerenciamento de controle de acesso Leitor de portão RFID UHF JT-923 ISO 18000-6C com tela Android para gerenciamento de controle de acesso

Chip principal: Chip serial TM Protocolo: ISO 18000-6C Tag RSSI: Suporte Área de suporte: América , Canadá e outras áreas de acordo com o critério da FCC Parte 15 Europa e outras áreas de acordo com o critério ETSI EN 302 308 China , Índia , Japão , Coréia , Malásia , Taiwan

UHF RFID middle range reader
Leitor integrado de médio alcance JT-8380 0-6m UHF RFID 860-960MHz Leitor integrado de médio alcance JT-8380 0-6m UHF RFID 860-960MHz

UHF RFID reader module
Módulo UHF RFID JT-2540 TM200 de 4 portas 860-960 MHz TTL Módulo UHF RFID JT-2540 TM200 de 4 portas 860-960 MHz TTL

Leitura em grupo >200 tags/seg; Alcance de leitura de até 0-25 m; 1-4 portas de antena SMA;

RFID reader module
Módulo JT-2302 HF RFID 13,56 MHz ISO14443A ISO15693 Suporte para cartão Mifare1 IC Módulo JT-2302 HF RFID 13,56 MHz ISO14443A ISO15693 Suporte para cartão Mifare1 IC

Distância de leitura : 0-3cm; Frequência de trabalho: 13,56 MHz; Suporte ao protocolo ISO14443A ISO15693.

RFID reader module
JT-1550 Pequeno Mini HF RFID 13,56 MHz Módulo ISO14443A Protocolo ISO 15693 JT-1550 Pequeno Mini HF RFID 13,56 MHz Módulo ISO14443A Protocolo ISO 15693

datamega

sempre um passo a mais!

Shenzhen Jietong technology Co., Ltd é uma empresa de alta tecnologia com foco em P&D, produção e vendas de hardware UHF RFID. A Jietong possui equipe própria de P&D, cujos engenheiros têm mais de 10 anos de experiência em P&D. A fim de fornecer o melhor serviço e produto ao cliente, a Jietong está em desenvolvimento contínuo para oferecer soluções completas para o projeto, serviço pós-venda e suporte tecnológico. A Jietong tem linhas de produtos principais que incluem  leitor de leitura multi-tags UHF RFID Impinj R2000/TM200 ,  leitor de leitura de etiqueta única UHF RFID ,  leitor UHF RFID de longo alcance ,  leitor UHF RFID de médio alcance ,  leitor/gravador de mesa RFID UHF ,  módulo leitor RFID UHF ,  UHF RFID Handheld Reader ,  UHF RFID antena ,  UHF RFID cartão  e Tag, etc., Jietong tem como princípio a supremacia dos usuários e depende de novas tecnologias e alta qualidade orientadas para o mercado, forneceremos a mais recente tecnologia, os melhores produtos, a competitividade e o serviço sincero aos nossos clientes. Nós nos estabelecemos como uma parte confiável, inovadora e confiável dos  negócios de seus clientes e fornecedores.

#

+86 18681515767

#

02. Porque escolher-nos

nossa vantagem

shenzhen jietong technology co. ltd., é uma empresa de alta tecnologia com foco em P&D, produção e comercialização de identificação por radiofrequência (RFID). profissional especial em leitor da série uhf rfid de internet das coisas. Jietong possui equipe própria de P&D, cujos engenheiros têm mais de 10 anos de experiência em P&D. a fim de fornecer o melhor serviço e produto ao cliente, a jietong está em constante desenvolvimento para oferecer solução completa para o projeto, serviço pós-venda e suporte de tecnologia.jietong tem linhas de produtos principais que incluem módulo rfid uhf, leitor portátil rfid, leitor rfid uhf, leitor rfid de gama média de estacionamento, leitor de controle de acesso uhf, antena uhf, cartões e tag uhf, etc.,jt uhf rfid reader já usado intensivamente na gestão de veículos, usando o ambiente também inclui gestão de pessoal para fábrica, gestão de peso para armazém, controle de acesso para armazém e veículo, gestão de roupas, gestão de logística de tabaco, gestão de biblioteca inteligente, gestão de identificação de linha de produção, ativos gestão etc.,Jietong tem o princípio da supremacia dos usuários e depende de novas tecnologias voltadas para o mercado e de alta qualidade, iremos fornecer a tecnologia mais recente, os melhores produtos, a competitividade, o serviço sincero aos nossos clientes.

  • profissionalprofissional

    a equipe de P&D tem mais de 10 anos de experiência;

  • produtosprodutos

    oferecer produtos de baixo custo, média e alta qualidade;

  • qualidadequalidade

    proteção de patente nacional para produto de marca própria

  • serviçoserviço

    2 anos de garantia e 3 anos de manutenção de custos;

nossa vantagem

03. casos de projeto

SOLUÇÃO&CASO

Esta página de solução ajuda os clientes a resolver o problema de instalação e gerenciamento de aplicativos usando os produtos da Jietong Technology. Estão incluídos: Gestão de veículos Gerenciamento de sistema pessoal UHF Gestão da linha de produção Gestao de logistica Gestão de ativos Gerenciamento de armazenagem Veículos de saneamento ambiental gerenciam Gerenciamento inteligente de estantes

  • Renewable Energy Manage Systems

    RFID Technology in the Renewable Energy Sector: Applications and Opportunities 1. Introduction As the global renewable energy industry expands, efficient asset management, supply c...

    consulte Mais informação
    Renewable Energy Manage Systems
  • gestão de veículos

    gestão de veículoscom o desenvolvimento terapêutico da economia chinesa, os padrões de vida das pessoas estão aumentando; a propriedade total do carro também começou a crescer rapi...

    consulte Mais informação
    gestão de veículos
  • gerenciamento pessoal

    uhf rfid pessoal managementsystem>> visão geral do sistemaO sistema de gestão de pessoal de cartão de longa distância é o moderno sistema de gestão de pessoal com a combinação da t...

    consulte Mais informação
    gerenciamento pessoal
  • gestão da linha de produção

    gestão da linha de produçãopara produzir produtos de melhor qualidade, ao mesmo tempo em que reduz os custos de produção e atende aos requisitos da ISO9000, os fabricantes acompanh...

    consulte Mais informação
    gestão da linha de produção
  • gestao de logistica

    gerenciamento de orientação de trilhos agvcom o nível de fabricação e o aumento da demanda dos clientes, uma variedade de sistemas de logística estão enfrentando muitos desafios, c...

    consulte Mais informação
    gestao de logistica
  • gestão de ativos

    sistema de gestão de rfid de ativosVisão geral do sistemaa forma de implementar manualmente a gestão de ativos incluindo o aumento, distribuição, armazenamento, eliminação, etc. de...

    consulte Mais informação
    gestão de ativos

04. eventos

últimas notícias

shenzhen jietong technology co., ltd. é uma empresa de alta tecnologia com foco no desenvolvimento, produção e vendas de identificação por radiofrequência (RFID).

RFID as the Digital ID Infrastructure of Robotic Systems
RFID as the Digital ID Infrastructure of Robotic Systems

If one of the most profound transformations of the past two decades has been the digitalization of human identity—through ID cards, phone numbers, online accounts, and digital wallets—then the next two decades will witness a quieter but equally significant shift: machines are being systematically assigned identities of their own. As robots move beyond isolated tools and enter factories, warehouses, hospitals, city streets, and even homes—collaborating with humans and other machines—a fundamental question can no longer be avoided: how does a system know who a machine is? In human society, this question is answered by identity cards, passports, and social identification systems. In the emerging robotic society, that role is increasingly being played by RFID. A robot without a stable, verifiable identity can only be treated as a replaceable device. Once it is given a recognizable and traceable identity, however, it becomes part of a managed system—subject to rules, permissions, and responsibility. Identity is the line that separates tools from participants. In the early days of automation, robots did not need identities. A robotic arm performed fixed movements, an AGV followed predefined routes, and recognizing the individual machine was largely irrelevant. Today, this assumption no longer holds. Robot populations are growing rapidly, collaboration is becoming more complex, and robots are being deployed in open and semi-open environments. Systems must know which robot is executing a task, whether it is authorized to enter a restricted area, and who—or what—is responsible when something goes wrong. Under these conditions, identity has shifted from a “nice-to-have” feature to a foundational requirement. Some may ask why IP addresses or QR codes are not sufficient. These solutions can work within limited, closed systems, but they are poorly suited to serve as the foundational identity mechanism of a machine society. IP addresses depend on network connectivity and are inherently changeable. QR codes require line-of-sight scanning and human or camera intervention, which reduces reliability in industrial and harsh environments. RFID, by contrast, offers contactless identification, strong uniqueness, physical embeddability, and environmental robustness. In practical deployments, identity recognition is typically enabled by a combination of RFID chips and uhf rfid antenna systems, allowing machines to be identified reliably without physical contact or human participation. Within a robotic society, RFID is not merely a serial number—it is the physical root of a digital identity system. Each RFID chip carries a unique identifier that can be bound to a robot at manufacturing or during system onboarding. Even when a robot is offline, powered down, or partially disassembled, its identity remains intact. Around this physical anchor, backend systems build comprehensive mappings that link the RFID ID to model information, ownership, permission levels, operational s...

January 29, 2026
RFID-Enabled Identification for Intelligent Deep-Sea Exploration
RFID-Enabled Identification for Intelligent Deep-Sea Exploration

Human understanding of the deep sea still lags far behind our imagination of outer space. Although more than 70% of the Earth’s surface is covered by oceans, only a small fraction of deep-sea regions has been systematically explored and documented. As deep-sea resource development, marine scientific research, and polar exploration continue to accelerate, a critical challenge has emerged: how to reliably identify, track, and manage equipment and samples in an extreme subsea environment characterized by high pressure, low temperature, severe corrosion, and the absence of GPS signals. This is where RFID technology is beginning to play an increasingly important role in deep-sea operations. 1. The Information Blind Spots of Deep-Sea Operations In traditional deep-sea missions, whether involving ROVs (Remotely Operated Vehicles), AUVs (Autonomous Underwater Vehicles), or deep-sea landers and sampling tools, information management has largely relied on manual labeling, video review, and mission logs. These approaches suffer from several inherent limitations. First, real-time verification is difficult; errors in sample recovery are often discovered only after the equipment returns to the surface. Second, data linkage is weak—equipment IDs, samples, timestamps, and depth information are often stored separately, making it hard to establish a complete traceability chain. Third, during long-term or multi-expedition projects, equipment mix-ups and sample misidentification remain common risks. As deep-sea exploration moves toward larger-scale and more systematic operations, traditional manual methods are no longer sufficient. 2. Why RFID Is Well Suited for Deep-Sea Environments RFID was not originally designed for deep-sea applications, yet several of its inherent characteristics make it particularly suitable for subsea use. First, RFID does not rely on line-of-sight. Unlike QR codes or visual markers, RFID uses radio-frequency communication, enabling stable identification even in turbid water and low-light conditions. Second, RFID components can be robustly encapsulated. In deep-sea scenarios, antennas such as RFID ceramic antennas are especially valuable due to their excellent resistance to high pressure, saltwater corrosion, and long-term environmental stress. Third, RFID provides unique identification. Each tag carries a globally unique ID, effectively creating a “digital identity” for every piece of equipment or sample—an essential foundation for deep-sea data systems. For compact subsea instruments and sampling containers, small UHF RFID antennas can be embedded directly into housings without affecting mechanical integrity, enabling identification while preserving streamlined structural design. In underwater applications, RFID is typically deployed for short-range identification, often operating in coordination with underwater communication systems rather than attempting long-distance wireless transmission. 3. Intelligent Identification and Management of...

January 27, 2026
Turning Reality into Intelligence: RFID as the Perceptual Gateway of Brain-Inspired Systems
Turning Reality into Intelligence: RFID as the Perceptual Gateway of Brain-Inspired Systems

Behind the frequently mentioned phrase “the brain-inspired era” lies a profound paradigm shift. Artificial intelligence is no longer driven only by bigger models and more computing power, but is beginning to learn from the human brain itself: perception, association, memory, decision-making, and evolution. Models are becoming more like a “digital brain.” Yet a fundamental question emerges: how can such a brain truly understand the real world? Without perceptual gateways, even the most powerful neural network is merely an “island of intelligence” trapped inside data. In this context, RFID is quietly becoming the first critical bridge connecting the physical world with brain-inspired intelligence. Traditional AI mainly learns from text, images, and speech on the internet — a “described world.” But true brain-inspired intelligence needs a “perceived world.” Just as a baby does not learn by reading books, but by touching, grasping, and observing, machines must build cognition through direct interaction with reality. UHF RFID tags — including specialized forms such as UHF RFID sport tags — act as the “sensory neurons” of this system, giving every object a unique, readable digital identity. When billions of items become perceptible, the world itself turns into a living perceptual map for neural networks. Technically, RFID is far more than an advanced barcode. It is a neural encoder for the physical world. RFID ceramic antennas enable stable and reliable sensing in harsh environments such as metal surfaces, high temperatures, and industrial workshops, while long-range and directional reader architectures provide spatial perception similar to human vision. A long range RFID reader module combined with a directional RFID reader gives the system “far-sight” and “focus,” allowing machines to understand where objects are, how they move, and how they interact in space — exactly like a visual cortex for the industrial world. In brain-inspired systems, perception is never isolated. It is tightly coupled with memory, reasoning, and prediction. RFID’s unique strength lies in its built-in time dimension and causal traceability. From raw material to finished product, every lifecycle event is captured by UHF RFID, forming an “experience memory” for neural networks. When an anomaly occurs, the system recalls similar sensory histories and predicts failure paths, making decisions closer to human intuition. In manufacturing, this bridge is already transforming factories. Traditional digital plants rely on dashboards; brain-inspired factories rely on perception. RFID-enabled machines, tools, and materials become part of a living sensory network. With ceramic-antenna-based tags surviving harsh production lines and long-range readers covering wide shop-floor areas, neural networks learn process laws, quality causality, and hidden risk patterns. The factory evolves from automation to cognition. In logistics and smart cities, the same architecture scales into a “sensory nerv...

January 19, 2026
RFID Solutions for Intelligent Biological Sample Tracking in Modern Laboratories
RFID Solutions for Intelligent Biological Sample Tracking in Modern Laboratories

In life sciences, medical diagnostics, and biopharmaceutical research, laboratories are no longer defined solely by test tubes and microscopes. As testing volumes grow, sample types diversify, and regulatory requirements become increasingly stringent, traditional laboratory management models—largely dependent on manual records and barcode-based identification—are revealing clear limitations. Issues such as low efficiency, high error rates, and insufficient traceability have become difficult to ignore. Against this backdrop, Radio Frequency Identification (RFID) technology is emerging as a foundational enabler of laboratory automation and digital transformation, particularly in the end-to-end management of biological samples. Challenges in Biological Sample Management Biological samples are highly sensitive and often irreplaceable. Whether dealing with blood, tissue sections, DNA samples, or cell cultures, any mix-up, contamination, or loss can compromise experimental results, derail research projects, or even lead to regulatory violations. In hospital laboratories, biobanks, and third-party testing facilities, thousands of samples may circulate daily, passing through tightly coupled stages such as collection, aliquoting, testing, storage, and transportation. While barcode systems have improved basic identification, they still rely heavily on manual scanning and visual confirmation. Labels can easily degrade under chemical exposure or ultra-low temperatures. In contrast, UHF RFID stickers designed for laboratory use can be securely attached to sample tubes and cryogenic containers, maintaining stable performance throughout high-throughput workflows and harsh storage conditions. RFID as the Foundation of Laboratory Automation Compared with barcodes, RFID offers significant advantages, including contactless operation, bulk reading capabilities, and stronger adaptability to harsh environments. By embedding RFID tags into sample tubes, cryoboxes, or transport trays, laboratories can identify and track samples without opening containers or performing individual scans. Within an automated laboratory ecosystem, RFID is more than a simple identification tool—it acts as a critical link connecting samples, equipment, and information systems. Industrial-grade RFID readers deployed at workstations, storage entrances, and transfer points ensure stable and accurate data capture even in electromagnetically complex laboratory environments. When integrated with Laboratory Information Management Systems (LIMS), automated aliquoting instruments, and cold-chain storage systems, RFID enables a sample-centric data network. Samples are automatically logged, verified, and tracked as they move through each process, significantly reducing reliance on manual intervention. End-to-End RFID Applications in Sample Workflows At the sample collection stage, RFID tags can be assigned and bound to sample data at the point of origin, minimizing the risks associated with delayed or m...

January 09, 2026
From Passive Roads to Intelligent Infrastructure: The Role of RFID in Autonomous Driving
From Passive Roads to Intelligent Infrastructure: The Role of RFID in Autonomous Driving

The progress of autonomous driving is often described as a competition in algorithms, computing power, and sensors. In reality, it is increasingly becoming a systems challenge—one that depends on how effectively vehicles and roads can work together. Relying solely on cameras, millimeter-wave radar, or LiDAR still leaves autonomous vehicles vulnerable to unstable recognition, environmental interference, and high system redundancy costs. Against this backdrop, RFID technology is being re-evaluated, gradually moving from logistics and manufacturing into intelligent road infrastructure and RFID vehicle management systems. From “Seeing” the Road to “Understanding” It Most autonomous vehicles today interpret road conditions through visual and radar-based perception. Lane markings, traffic signs, signals, and obstacles are detected passively, based on what sensors can observe at a given moment. Under ideal conditions, this works well. However, rain, snow, fog, glare, worn lane markings, or temporary construction zones quickly expose the limits of this approach. The road itself remains silent, offering no direct confirmation of what a vehicle believes it sees. RFID markers change this relationship. By embedding RFID tags into key road elements—lanes, intersections, speed-control zones, construction areas, and roadside infrastructure—the road gains a digital identity that can be read directly by vehicles. With properly designed UHF RFID antennas installed on vehicles or embedded near the roadway, information can be captured reliably without dependence on visibility or lighting conditions. How RFID Is Deployed in Intelligent Road Systems In road environments, RFID typically takes the form of passive UHF tags or ruggedized, weather-resistant markers installed beneath the road surface, along curbs, within guardrails, or inside traffic facilities. Autonomous vehicles equipped with onboard RFID readers can automatically detect these markers as they pass, without any active interaction. To support stable reading at driving speeds, vehicles often integrate a long-range RFID reader module, allowing tags to be identified early enough for decision-making. Each tag can store standardized information such as road classification, speed limits, lane attributes, intersection identifiers, or warnings related to temporary conditions. When integrated with high-definition maps and vehicle control systems, RFID enables vehicles to anticipate road conditions rather than react to them. Enhancing Positioning Accuracy Where GPS Falls Short High-precision positioning remains one of the most difficult challenges in autonomous driving. Even when combining GNSS, inertial measurement units, and visual SLAM, location drift can occur in tunnels, dense urban areas, or locations with poor satellite coverage. RFID markers provide fixed physical reference points. Each time a vehicle reads a tag, it can recalibrate its position with high confidence. This approach has proven particularly val...

December 15, 2025
Making Waste Talk: How RFID Enables Full-Lifecycle Green Recycling
Making Waste Talk: How RFID Enables Full-Lifecycle Green Recycling

Against the backdrop of carbon neutrality goals and the growing emphasis on the circular economy, waste recycling is no longer a simple process of collection, transportation, and dismantling. Instead, it has evolved into a systematic project encompassing product design, usage management, recycling traceability, and resource regeneration. In practice, low recycling efficiency, unclear sources, opaque material flows, and weak accountability continue to constrain the large-scale development of green recycling systems. Enabling waste items to be identified, understood, and tracked throughout the recycling process has become a critical challenge. RFID technology is emerging as a powerful solution to this problem. From Anonymous Waste to Digital Identity In traditional recycling systems, most waste items lose their “identity” once they enter the recycling stage. Recycling enterprises often rely on visual inspection, experience, or manual sorting, resulting in low efficiency and high error rates. By embedding RFID tags into products or packaging, each item is assigned a unique digital identity from the very beginning. For large-scale consumer goods and packaging waste, UHF RFID stickers provide a cost-effective and scalable solution, allowing product information such as model, material composition, production batch, service life, and maintenance history to be stored and retrieved efficiently. When the product reaches the end of its usable life and enters the recycling stream, RFID readers can instantly identify and extract this data. Waste items are no longer silent resources—they become data carriers capable of “communicating” their remaining value. Building a Fully Traceable Lifecycle Chain The core of green recycling lies in full lifecycle management. The value of RFID extends far beyond the recycling stage and runs through every phase of a product’s life, from manufacturing and distribution to use and disposal. During production, RFID tags record material sources and environmental attributes, laying the foundation for future disassembly and reuse. In industries involving metal components, electronic assemblies, or high-temperature processes, RFID ceramic antennas ensure stable tag performance under harsh conditions, enabling reliable identification even after prolonged use or exposure. During circulation and usage, RFID supports asset management and reduces losses and excessive consumption. At the end-of-life stage, systems can automatically determine whether an item is suitable for remanufacturing, component recovery, or material-level recycling based on lifecycle data. This closed-loop data structure transforms recycling from an endpoint into the starting point of a new resource cycle, enabling recycling systems to become measurable, auditable, and continuously optimizable. Improving Efficiency and Reducing Operational Costs The recycling industry has long been characterized by high labor dependence and extensive management practices. RFID’s abili...

December 23, 2025
#
#

05. consulta gratuita

Deixe um recado

se você está interessado em nossos produtos e deseja saber mais detalhes, deixe uma mensagem aqui, nós responderemos o mais breve possível.

*
*
*

direito autoral © 2026 Shenzhen Jietong Technology Co.,Ltd. todos os direitos reservados.

rede ipv6 compatível

topo

Deixe um recado

Deixe um recado

    se você está interessado em nossos produtos e deseja saber mais detalhes, deixe uma mensagem aqui, nós responderemos o mais breve possível.

  • #
  • #
  • #